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The resistivity of a one-dimensional lattice consisting of randomly distributed 
conducting and insulating sites is considered. Tunneling resistance of the form 
pone b" is assumed for a cluster of n adjacent insulating sites. In the thermody- 
namic limit, the mean resistance per site diverges at the critical filling fraction 
Pc = e-b, while the mean square resistivity fluctuations diverge at the lower 
filling fraction Pc2 =Pc 2- Computer simulations of large but finite systems, 
however, show only a very weak divergence of resistivity atpc and no divergence 
of the fluctuations at Pc2. For finite lattices, calculation of the resistivity at the 
critical filling is shown to be simply related to the Petersburg problem. Analytic 
expressions for the resistivity and resistivity fluctuations are obtained in agree- 
ment with the results of computer simulations. 
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1. I N T R O D U C T I O N  

A n u m b e r  of  o n e - d i m e n s i o n a l  r a n d o m  sys tems  d i sp lay  a sens i t iv i ty  to 

s ta t i s t ica l ly  ra re  events .  Th is  f ea tu re  m a y  g ive  rise to a s i tua t ion  in wh ich  

" t y p i c a l "  b e h a v i o r  is v e r y  d i f f e r en t  f r o m  w h a t  ob t a in s  if o n e  takes  a s imple  

e n s e m b l e  a v e r a g e )  S ince  a n u m b e r  of  subt le  ques t i ons  then  arise,  we  f ind  it 
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useful to consider a simple model which exhibits this sensitivity and which 
allows detailed analysis. 

Our model system consists of a linear array of sites on which insulating 
and metallic units are placed at random. For simplicity, we take the 
resistance of the metallic sections to be zero, while the "tunneling" resis- 
tance of a cluster of n consecutive insulating units, each of unit length, is 4 

R, = pone b" (1) 

where P0 and b are positive constants. 
Consider an ensemble ~t of chains, not necessarily distinct, each 

consisting of N sites. Each site has the probability p of being occupied by 
an insulating unit, and for simplicity we employ periodic boundary condi- 
tions. In the limit that the ensemble/~ becomes infinite, the mean number  
(m(n)} of insulating clusters of size n is 5 

[ N ( l - p ) 2 p "  if 1 ~< n < N -  1 
/ 

~m(n)~N!l--t~)t ~n i f  n ~ N -  1 ( 2 )  

if n= N 
otherwise 

In units of the resistivity P0, the mean resistivity averaged over the ensem- 
ble/~ is 

N 
1 (m( , ) )R.  

<P} - Po g n =  1 

z [ e " - ( N - l ) e " ( ~ v - l ) + ( N - 2 ) e  "N ] 
= (1 - p )  ( l  - e")  2 

+ (1 - p ) ( N -  1)e "(N-I) + e "N (3) 

where a = In p + b. It is worth noting that 

where 

1 0 
( O } - -  2 N  Ob ( G }  (4) 

N 
(G} = 2 ~ (m(n)}e b" (5) 

n=l 

4 This relation holds for metal-insulator junctions at low temperatures in certain situations; 
for example, see Ref. 3. 

5 See for instance Ref. 4. 
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Thus ( G )  may be viewed as a generating function of the mean resistivity. 
If we now take the thermodynamic limit N ~  m, we see that there is a 
critical value p~ of the probability p, given by Pc = e -b  (or a = 0) below 
which the resistivity becomes intensive: 

t 1 -f ~-b (6) 

A t p  = Pc, (O) = �89 -pc)2N 2 + O ( N ) ,  while fo rp  > Pc the mean resistivity 
grows exponentially with the length of the chain. Thus, in the thermody- 
namic limit, a conductor-to-insulator transition is expected. Computer 
simulations show that the resistance per site increases with N for p >~ Pc- 
However, the observed divergence is much weaker than predicted by Eq. 
(3). The computed value of the resistivity at p ~> Pc for large but finite N is 
almost always found to be much smaller than the computed mean value 
from Eq. (3). This discrepancy between the mean resistivity and the values 
obtained from computer simulations is in close analogy to the Petersburg 
paradox discussed below. 

In the Petersburg game, a single trial consists of tossing a true coin 
until it falls heads; if this occurs on the rth throw, the player receives 2 r 
ducats. The game may be amended (5~ so that the player receives nothing if 
a trial takes more than T tosses. The expectation value E of the player's 
profit from a single trial is 

2 22 23 . 2 r 2T=r 
The paradox is that even for finite (but large) T, the average profit obtained 
per trial in everyday experience is much less than T. This problem, for 
T ~  ~ ,  was first discussed by Daniel Bernoulli (6~ in 1730; it has subse- 
quently ~oeen addressed by Cramer, Fontaine, D'Alembert, Buffon, Beque- 
lin, Condorcet, Laplace, Poisson et al. (7~ 

The problem of tunneling resistivity and the Petersburg problem may 
be related if each site on the lattice is regarded as corresponding to a toss of 
the coin. If p = 0.5, conducting sites correspond to a true coin falling heads, 
and a chain of N sites corresponds to a Petersburg game of as many trials 
as there are conducting sites and total number of N tosses. For simplicity, 
we have again applied periodic boundary conditions. The mean number of 
trials yielding 2 ducats (i.e., consisting of 1 throw) is equal to the mean 
number of conducting sites minus the mean number of insulating clusters. 
Adding all contributions, we get for the expectation value (ensemble 
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average) of the profit 
N 

( E )  = I N ( 1  - p ) -  N(1 --p)p--pN]2 + 2 (m(n) )  2"+1 
u = |  

= � 8 9  + 1) + 2 - 2 -N+I 

For large N, 

N N2 
(E)- - - - -2~  (re(n)>2 ~ -  2 -(G>Ip=P~ 

n = l  

where (G)]p=pc is the generating function of Eq. (5) evaluated at the 
critical value of p (Pc = �89 in our case). 

Both in the tunneling problem and in the present version of the 
Petersburg game, the mean resistivity for p ~ Pc and the mean profit in the 
game are almost always much greater than the outcome of the experiments. 
A modern treatment of the Petersburg problem is given by Feller. (5) The 
salient feature is that the dominant contribution to the mean value comes 
from the improbable occurrence of large clusters of insulating sites (runs of 
tails). The mean number of such clusters in the ensemble is much less than 
1. In any realization, the number of clusters of any size must be an integer. 
The number of very large clusters will therefore almost always be 0. In 
order to discuss the expected outcome of computer experiments, we next 
turn to the evaluation of the most likely outcome of a single experiment, as 
well as the average resistivity and deviations from this value of a limited 
size sample. To do this, we propose a method of analysis, which, when 
applied to the Petersburg problem, gives results in agreement with Feller. (5) 

2. THE MOST PROBABLE OUTCOME 

If a single chain is selected at random from the ensemble/~ of chains 
of length N, the most probable number of clusters of size n in this chain 
can be taken to be 

[ m (n)] = Integer((m (n))) 

where [ ] denotes the most probable value and Integer(x) is the integer 
nearest to x. If M chains are chosen at random from the ensemble, the 
most probable value of the average number of clusters of size n in the set of 
M chains is, to a good approximation, 

1 {Integer(M(m(n)))} (7) [m(n)]M= ~ 

Since (m(n)) is a monotonically decreasing function of n, there exists a 
most probable maximum cluster size nm. x such that fro(n)] M = 0 for all 
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/7 > t/ma x. We may determine nm~ • by setting (rn(n)) = 1/2M in Eq. (1), 
giving 

(-ln(2NM(I-p)2) } 
nrnax --- Integer In p (8) 

for nrnax < N ;  else nma x = N. An alternative method of arriving at a cutoff 
is as follows. The mean number of clusters with length n greater than some 
integer v is 

( ) ~, (m(n))=N(1-P) 2 p~,+l pN+, ~--N(1--P)P ~+~ f o r l a r g e N  
n = u + l  1 /0 

The most probable maximum cluster size in a sample of M chains is 
estimated by setting this equal to 1/2M, giving 

//max = Integer In p 

The difference between these two estimates is only significant if/7 ~ 1. 
Our analysis is illustrated in Fig. 1 by the result of a computer 

simulation. Chains of length N were sequentially filled with probability p. 

'~ ~ . . ~  ~ - 10 RUNS 
q , 0 - 100 RUNS 

J _  

0 0 l .O 2.0 3 0  4,0 5.0 6.0 7.0 8.0 9.0 10.8 1I .0 12.0 13,0 14.0 15.0 lS. f l  17.0 18.0 I 9 .0  20.0 21.0 
CLUSTER SIZE 

Fig. 1. Average number of clusters versus cluster size for chains of length N = 10,000. The 
solid lines show the mean number of clusters (m(n)). Results of computer simulations are 
denoted by O for M = 100 and ~ for M = 10. Note that for p = 0.5, simulations give 
nma x = 21 and 16, respectively, for M = 100 and 10, while Eq. (8) gives 19 and 16. For 
p = 0.25, simulations give nma x = 9 and 7 while theory gives 10 and 8. 
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The average number of clusters of a given size was obtained by averaging 
over M such runs. The predicted mean number (m(n)) of clusters is also 
shown. 

For ease of calculation, it is useful to approximate the most probable 
average number of clusters [re(n)] M in a sample of M chains by allowing 
M[m(n)] to assume noninteger values below the cutoff, i.e., 

(m(n)) ,  for n < ?'/max 

[m(n)]M = O, otherwise 

The most probable value of the average resistivity from M simulations is 
then 

N nmax 
1 ~ [m(n)]MR. ~ 1 2 ( m ( n ) ) R "  

[ P ] M -  po u n=l -- O0 ---~ n=l 

= (1 --p)2I e'~ -- (nmax + 1)e~'( . . . .  +1) + nm~xe,~(n,..~+2) 

L (1 - e ~ )  2 
(9) 

At the critical filling Pc, a = 0, both the numerator and denominator 
vanish, but [P]M has the limit 

[p]Mlp=p c = l ( 1  --  pc)2g/max(nmax -b l )  (10 )  

[P]M is a mostly smooth function of p with small jumps each time nma x 
increases by 1. At the critical filling, we have 

[P]M(p) p=pc----- N 21 ln2(NM) (11) 

In the thermodynamic limit N ~ oe there is still a resistivity divergence 
in [pM]lp=ec~lnZN, but this divergence is much weaker than that of the 
mean resistivity and would be difficult to detect for chains with large but 
finite N. For p > Pc, the most probable resistivity of Eq. (9) increases 
approximately linearly with N, while the mean resistivity of the ensemble 
increases exponentially with N. The results of computer simulations are 
expected to approach the mean value only if the right-hand side of Eq. (1 1) 
equals 1, that is, if M ~  e U- ~n U. The signature of the behavior near p = Pc is 
therefore the rather curious fact that the average resistivity of M samples 
tends to increase with M. In Fig. 2 we show the results of computer 
simulations which illustrate this behavior. 
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Fig. 2. Average resistivity of M samples versus filling fraction for chains of length N = 10, 
000 and b = In 2. The dashed line shows the mean resistivity (p> in the ensemble ff from Eq. 
(3), while the solid lines show the most probable average resistivity [P]M of M samples from 
Eq. (9). Results of computer simulations are denoted by �9 for M = 100 and A for M - 10. 

In a single chain, if b = In 2, the most probable value of the quantity G 
at the critical filling Pc = �89 is given by 

nrnax N N l n ( N / 2 )  
[ G]I~=.~ = 2 n=21 <m(n))2"= ~--F/ma x -- 2 ln2 (12) 

For large N, the most probable profit [E] from a Petersburg game of N 
tosses is (N/2)(ln(N/2)/ln2). Alternatively, the expected number of trials 
71 in a game of N tosses is 7 =  N/2. This gives [ E ] =  Ttln~//ln2 in 
agreement with Feller. (5) 

3. F L U C T U A T I O N S  

In addition to the most probable resistivity, it is interesting to examine 
the resistivity fluctuations, i.e., the root mean square deviation of the 
resistivity from the mean defined by 

N N RiRj 
<X)2 = <p2> _ <p)2 = Z ~ ( ( r n ( i ) m ( j ) )  - ( m ( i ) ) < m ( j ) > )  p2N2 ( 1 3 )  

i=1  j = l  
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It is straightforward to show that 

Npi(1 _ p)2( 8,y + p J(1 - p)2(N - 

+ 2 y ( 1 - p ) )  if 

Np'(1 - +pJ )  if 

(m(i )m(j ) )  = Np~(1- P) 2 if 

NF(I  - p) 
pi 

0 

i - j  - 3) 

i + j + 2 < N  

i + j + 2 = N  

i = j and 

~ N < i < N - 1  
2 

if i = j = N - I  

if i = j = N  
otherwise 

(14) 

The mean fluctuation (X) can be exactly evaluated using Eq. (14) and Eq. 
(1). For 0 < p < Pc and large N, keeping only dominant terms, this gives 

(1 
-- P)----~ (N + 1)2e v(lv+') + (2N 2 + 2N - 1)e v(u+2) (X)2-- NI (1 - eV) 3 {ev + ezv - 

--  N 2 e v ( N + 3 ) )  

where y = In p + 2b. There is a critical value of the probability p given by 
pc 2 = e - 2 b =  p2 below which the mean square fluctuations go to zero as 
1/N in the thermodynamic limit N ~  oe; forp  << e -2b, (x)Z'-~pe2b/N. As 
the critical filling Pc2 (7 - -0 )  is approached, the fluctuations tend to the 
limiting value 

(x)Z[p=pc2 = �89 - p)ZU2 + O(U) 

and above this critical filling (X) 2 diverges exponentially with N. Again, 
this divergence is not seen in computer simulations; the discrepancy, as 
before, is due to the difference between the most probable value and the 
mean value in the ensemble. 

If M chains are chosen at random from the ensemble it, the most 
probable average value of the product m(i)m(j) is of the order 

1 [ m (i) m (j)  ] M ---- ~ { Integer(M(m (i) m ( j ) ) )  } 

The region of the i-j  plane outside which (m( i )m( j ) )< 1/2M can be 
obtained from Eq. (14); this gives i + j  ~< 2nm, x if nma x, from Eq. (8), is less 
than (N - 1)/2. Since most of the contributions to (X) 2 come from terms 
where i ~ j ,  we assume that this region can be approximated by 1 < i 
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nma • and 1 < j ~< nmax, and that M[m(i)m(j)] can assume noninteger 
values below the cutoff. Thus 

(m(i)m(j)), if 1 ~ i ~ V/ma x and 1 ~< j < nma x 
[ m(i)m(j) JM= O, otherwise 

The most probable resistivity fluctuations [X]M in a set of M chains is then 
given by 

"m~" .... R, Rj (15) 
[X] 2 =  E E {(m(i)rn(j))- (m(i))<m(j))} p~N2 

i=1 j = l  

The results of simulations and the most probable fluctuations [X]M are 
shown in Fig. 3 together with the mean fluctuations (X) in the ensemble. 
As in the case of resistivity, the most probable fluctuations for p ~> p~: 
increase with the number of samples M. The most probable fluctuation at 
p = p~ is 

1 (I~N_P)2 ( -ln2MN(1-P)2 } 3 
I X ] 2 - -  3 In p 

and for p < p~, the most probable fluctuations decrease with chain length 

oO 

J 

oOr 

N 
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0.0 

k,t= I 00  

o/ 
~ M= IO  

I I I I I I I I t ~ I i I I I I I I I I I i I I I I I I I I I I I I I 
0,1 0.2 0 .3  0 ,4  0.5 0.6 0,7 

FILLING FRACTION 

Fig. 3. Resistivity fluctuations of M samples versus filling fraction for chains of length 
N = 10,000 and b = In 2. The dashed line shows the mean fluctuation (X) in the ensemble # 
from Eq: (13), while the solid lines show the most probable fluctuation [X]M in M samples 
from Eq. (15). Results of computer simulations are denoted by O for M = 100 and A for 
M=IO.  
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Fig. 4. Resistivity fluctuations versus chain length N; b = In 2 and M = 100. The solid lines 
show the most probable fluctuations [X]M from Eq. (15). Results of computer simulations are 
denoted by O forp = Pc~ = 0.25, A forp = p~ = 0.5, and [] forp = 0.6. 

N. Thus, if the sample size M is fixed, there is no evidence of  divergence in 
[X]M for p = Pc,. This behavior  is illustrated in Fig. 4, where we show the 
most  probable  fluctuations for p = Pc~, P = P c ,  and p > Pc together with 
results of computer  simulations. The curious behavior  that  the fluctuations 
decrease with N for Pc, < P < Pc while they increase with N for p > p~ can 
be unders tood f rom the following crude argument.  

If we assume that the sum of the resistivities in a set of M chains is 
domina ted  by the resistance of the largest occurr ing cluster of size nm~, 

brtmax / i I  then this sum Ptot-- nmax e / Iv  and  [X] 2 = b:tot(1/m - 1/M2) .  Substitut- 
ing for nma x f rom Eq. (8) gives 

( b 1 ) l n N  + O ( l n l n N )  I n [ x ]  = l n p  

Thus the slope of the line In[x] vs. ln N changes sign at b = - l n p ,  or 
t 9 = Pc = e -b ,  and the most  probable  fluctuations are expec t ed  to decrease 
with N if p < lot and increase if iv > Pc. 

4. D I S C U S S I O N  

In conclusion, we have found that  the tunneling resistivity in a 
randomly  filled chain is sensitively dependent  on the improbable  occur- 
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rence of large insulating clusters. We have established a close analogy with 
the Petersburg game where expected profits sensitively depend on the 
improbable occurrence of large runs of tails in a coin-tossing experiment. 
In a set of M samples of finite size, both the average resistivity and the 
resistivity fluctuations are significantly different from their mean values in 
the ensemble ~ of chains for filling fractions near and above the critical 
value. Theory is provided to describe these properties in good agreement 
with computer experiments. 

In the present theory, there is a logarithmic divergence with N of the 
most probable resistivity at p = Pc; the mean resistivity in the ensemble/~ 
diverges as N 2 at this same critical filling. The most probable fluctuations 
also diverge logarithmically at p =Pc; however, the mean fluctuations in 
the ensemble /~ diverge at the lower critical filling Pc2 = p2. One might 
attempt to see the divergence in the most probable resistivity by plotting 
ln[o] vs. in N; however, another test of the present theory is the prediction 
illustrated in Fig. 4 that the most probable fluctuations decrease with N for 
p < p~ and increase with N for p > Pc. An interesting feature of this model 
is the prediction that the most probable average resistivity of M samples 
tends to increase with the number of samples M for filling fractions near 
and above the critical value. (In simulations, however, this increase is very 
irregular as expected from the theory.) Other quantities, such as the 
geometric mean resistivity and conductivity of a single chain or a bundle of 
chains can also be studied. Computer simulations indicate that above the 
critical filling the geometric mean increases with increasing N and both the 
average conductivity and the conductivity of a bundle will go to zero, but, 
as expected, with much smaller fluctuations. Detailed studies of these 
quantities will be published elsewhere. 
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